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ABSTRACT

While imitation learning (IL) offers a promising framework for teaching robots
various behaviors, learning complex tasks remains challenging. Existing IL poli-
cies struggle to generalize effectively across visual and spatial variations even
for simple tasks. In this work, we introduce SPHINX (Salient Point-Based Hy-
brid ImitatioN and eXecution), a flexible IL policy that leverages multimodal ob-
servations (point clouds and wrist images), along with a hybrid action space of
low-frequency, sparse waypoints and high-frequency, dense end effector move-
ments. Given 3D point cloud observations, SPHINX learns to infer task-relevant
points within a point cloud, or salient points, which support spatial generaliza-
tion by focusing on semantically meaningful features. These salient points serve
as anchor points to predict waypoints for long-range movement, such as reaching
target poses in free-space. Once near a salient point, SPHINX learns to switch to
predicting dense end-effector movements given close-up wrist images for precise
phases of a task. By exploiting the strengths of different input modalities and ac-
tion representations for different manipulation phases, SPHINX tackles complex
tasks in a sample-efficient, generalizable manner. Our method achieves 86.7%
success across 4 real-world and 2 simulated tasks, outperforming the next best
state-of-the-art IL baseline by 41.1% on average across 440 real world trials.
SPHINX additionally generalizes to novel viewpoints, visual distractors, spatial
arrangements, and execution speeds with a 1.7× speedup over the most compet-
itive baseline. Our website contains code for data collection and training code
along with supplementary videos: http://sphinx-manip.github.io.

1 INTRODUCTION

Imitation learning (IL) of visuomotor policies is a widely used framework for teaching robots ma-
nipulation tasks given demonstrations collected by humans (Schaal, 1996). While prior works have
shown that IL policies can learn a range of behaviors with sufficient data, from simple object pick-
and-place to more complex tasks, they typically succeed only in highly controlled settings with
low variation. Generalizing to realistic visual and spatial variations remains a significant challenge.
Consider teaching a robot to make a cup of coffee in the morning, which demands precision, long-
horizon reasoning, and tolerance to environment variations. The robot must first carefully grasp a
mug handle, position it under the machine, insert a pod into a narrow slot, close the lid, and press a
button – all with very little margin for error (Fig. 1). Even after mastering this sequence, the policy
might struggle with spatial changes like moving the machine, or visual changes such as new coffee
pods, spilled grounds, a different camera angle, or varying lighting conditions. This underscores the
need for IL policies that can learn complex tasks from a limited number of demonstrations while
effectively generalizing to natural and expected variations in the real-world.

Conventional IL policies often struggle with both performance and generalization, largely due to
limitations in their input and output representations. First, they tend to rely heavily on visual inputs
like RGB images, treating irrelevant details like the background, lighting, or viewpoint the same as
task-relevant information. This can cause a policy to memorize specific scenes, making it brittle to
visual variations (Zhao et al., 2023; Chi et al., 2023). Second, these policies usually predict actions
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Figure 1: SPHINX is a hybrid IL agent which learns to switch amongst different modes (mt) of execution
to tackle complex tasks with visuospatial generalization. In waypoint mode, πwaypt takes a point cloud as
input, and predicts a single waypoint wt as an offset (ϕt) to a task-relevant salient point zt (i.e. mug handle,
coffee pod, etc. denoted). After reaching a waypoint via a controller, the policy uses learned switching to
a dense policy πdense, which takes wrist-camera images as input and outputs dense actions (at) for precise
manipulation around a salient point. On the right, the policy interleaves both modes of execution to complete a
long-horizon coffee-making task guided by salient points (●) and mode switches (■).

for the next immediate timestep, which hampers spatial reasoning. Simple spatial movements, like
reaching, are predicted through hundreds of end-effector actions, increasing the risk of veering off
course. To address these limitations, recent works explore 3D scene representations, such as point
clouds and voxel grids, to offer better spatial awareness, and propose predicting actions as end-
effector poses (waypoints) reachable through a controller or motion planner (Goyal et al., 2023;
Sundaresan et al., 2023; Yang et al., 2024a;b; Shridhar et al., 2023). This can drastically shorten
the action prediction horizon and enable better spatial generalization. However, these methods often
lack precision, as point clouds typically lack the necessary resolution to capture small object details
preserved in images. On the other hand, recent image-based IL policies attempt to remedy spatial
generalization using hybrid action spaces (Belkhale et al., 2023; Shi et al., 2023). Here, the policy
has two potential modes of execution: waypoints for long-range motions like reaching, or dense
actions — end-effector movements predicted per-timestep — only when precision or reactivity is
required. These works ultimately consider training policies with a single input modality type, and
optionally hybrid actions. In reality, different phases of a task may lend themselves more favorably to
different visual inputs or action modes. A policy which can effectively choose and interchange both
the input modality and the underlying action representation during execution remains underexplored.

Our key insight is that by encouraging the policy to attend to salient points—task-relevant 3D
points—we enable it to choose between different input modalities as well as different action modes
when appropriate, improving performance and generalization. Fig. 1 illustrates example salient
points in the coffee-making task in red (i.e. the mug handle, pod, etc.). We introduce SPHINX:
Salient Point-based Hybrid ImitatioN and eXecution, a hybrid IL agent which learns to switch
amongst a waypoint policy which predicts waypoint actions given point clouds, and a dense pol-
icy which predicts dense actions given close-up wrist-camera images. Specifically, the waypoint
policy manages long-range movements by first predicting salient points that narrow the search space
of actions around spatially relevant features, promoting spatial generalization. It then predicts way-
point actions relative to these points. After reaching a waypoint, SPHINX switches to a dense policy
which takes wrist-camera images as input. This policy captures close-up object details for precise
manipulation and supports visual generalization by staying agnostic to broader scene changes. To
support training SPHINX, we develop a flexible data collection interface that allows demonstrators
to specify salient points and switch modes in real-time during teleoperation.

Empirically, we show that SPHINX can tackle a range of precise, long-horizon manipulation tasks,
including four real-world scenarios (drawer-opening, cup-stacking, coffee-making, toy train assem-
bly) and two simulated ones. SPHINX achieves 86.7% success and outperforms the next best IL
baseline by 41.1% on average, while generalizing better to visual distractors, viewpoints, spatial ar-
rangements, and execution speeds. We open-source our web-based data collection interface for spec-
ifying salient points and hybrid teleoperation, alongside code, supplementary material, and videos
at: http://sphinx-manip.github.io.
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2 RELATED WORK

Imitation Learning for Robotics Control: Imitation learning has long been a foundational ap-
proach in robotics for teaching robots to replicate human demonstrations (Schaal, 1996; Atkeson &
Schaal, 1997; Pomerleau, 1988). Robotic imitation learning policies typically take images as input
and output motor commands, such as joint positions, velocities, or Cartesian end-effector poses.
Recent works of that type (Reuss et al., 2023; Chi et al., 2023; Zhao et al., 2023) have demonstrated
strong performance on tasks in controlled settings with a limited initial state distribution. However,
they struggle to generalize to unseen visual or spatial variations. To address visual generalization,
some works augment vision-based policies with diffusion-generated image observations (Yu et al.,
2023; Bharadhwaj et al., 2024). While useful and complementary to our approach, these augmen-
tations do not directly enable spatial generalization. Other works propose replacing image inputs
with 3D scene representations such as point clouds and voxel grids, and outputting actions as way-
points, 6-DoF poses reachable through motion planning (Sundaresan et al., 2023; Shridhar et al.,
2023; Yang et al., 2024b). While this reduces the complexity of action prediction from hundreds of
actions to a single pose, 3D representations such as point clouds often lack the resolution to enable
precise manipulation of small objects. Other recent approaches like HYDRA (Belkhale et al., 2023)
and AWE (Shi et al., 2023) take image inputs but propose a hybrid output action space of waypoints
and dense actions. These distinct action modes are intended for long-range and precise movements,
respectively. Our method builds on these approaches by leveraging salient points to bridge a hybrid
input space of point clouds and wrist-camera images, and a hybrid output action space of waypoints
and dense actions.

Action Representations: Most visual imitation learning works rely on standard 6-DoF action
spaces, but recent efforts explore alternatives for better spatial generalization. One approach in-
volves predicting actions as parameterized manipulation primitives instead of low-level end-effector
movements. This reduces the dimensionality of the action space and improves sample efficiency,
but often requires task-specific engineering (Dalal et al., 2021; Sundaresan et al., 2023; Nasiriany
et al., 2022; Agia et al., 2022). Other methods exploit equivariance, ensuring that transformations of
visual inputs (e.g., rotations or scaling) are reflected in output actions (Wang et al., 2024; Yang et al.,
2024a;b). However, these works often rely on limiting assumptions like access to object states via
segmentation, or single-object tasks. In the grasping domain, many policies consider point clouds
as inputs and an output action space defined as per-point predictions for the end-effector pose. This
has proven effective for learning sample-efficient and generalizable grasping policies (Saxena et al.,
2008; Sundermeyer et al., 2021). Inspired by this, our method also parameterizes waypoint actions
as offsets to salient points in a point cloud, but we critically learn a hybrid policy which predicts
both waypoint and dense actions to tackle longer-horizon and precise tasks beyond grasping.

Data Collection for Imitation Learning: Despite the advancements in action representations and
spatial generalization, the success of visual imitation learning policies still hinges on the quality
of teleoperated demonstrations. Human operators typically collect robot data using interfaces like
virtual reality controllers (Jedrzej Orbik, 2021), handheld devices (Chi et al., 2024), puppeteering
setups (Zhao et al., 2023), or 3D mice (e.g., Spacemouse). However, these interfaces map demon-
strator controls directly to robot actions on a per-timestep basis, which presents two key limitations.
First, the recorded data only captures (observation, dense action) pairs, lacking compatibility with
waypoint actions or useful metadata such as salient points. Second, directly controlling long-range
movements can be inefficient, noisy, and tiring for demonstrators. To address these issues, we design
an interface (Fig. 2) that seamlessly integrates both waypoint and dense action modes. A custom
web-based GUI supports waypoint mode, allowing demonstrators to specify salient points and way-
points with the ease of simple clicks and drags. A controller can then reach the specified waypoint
automatically, removing the need for constant teleoperation from the demonstrator. Additionally,
the interface is compatible with any external device for dense actions, allowing for easy switching
between the computer mouse and the device, as long as it is on hand. This provides a flexible and
efficient data collection process for high-quality hybrid datasets, with no post-hoc labeling required.

3 PROBLEM STATEMENT

In standard IL, we are given a dataset D of N trajectories of expert demonstrations {τ1, . . . , τN}.
Each trajectory is a sequence of observation action pairs (o0, a0, . . . , oT , aT ). The goal is to learn
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a policy π(at|ot) that matches the expert distribution using the following loss −Eτ∼D log π(at|ot).
However, this formulation can easily lead to compounding errors for long-horizon tasks where
episodes may span hundreds of steps. In this paper, we instead consider a hybrid imitation learn-
ing setting where the policy can either output a dense action at ∈ R7 as in the standard setting
or output a waypoint wt ∈ R7 that abstracts a sequence of dense actions into a single prediction
for long-range movement. Both waypoint and dense actions capture the end-effector pose, but a
waypoint action wt′ specified at timestep t′ is translated to a sequence of kt′ interpolated actions
{at′ , . . . , at′+kt′−1} by a controller at = C(oposet , wt′) based on the current pose oposet and the
target waypoint wt′ specified at t′. In practice, we use a simple controller that linearly interpo-
lates between current pose and target waypoint. Then, we can record a timestep in the dataset as
(ot, at,mt, [wt′ ]) where mt ∈ {waypt,dense,terminate} is the mode and wt′ is the optional
target waypoint only when mt = waypt. Each wt′ spans the next kt′ steps decided by the con-
troller. Our goal is thus to learn a hybrid policy π(ot) that first predicts a mode p(mt|ot) and then
predicts either a waypoint from πwaypt(wt|ot) or a dense action from πdense(at|ot).

4 SPHINX: SALIENT POINT-BASED HYBRID IMITATION AND EXECUTION

We introduce SPHINX: Salient Point-based Hybrid ImitatioN and eXecution, a framework for learn-
ing sample-efficient, generalizable imitation policies capable of handling complex, long-horizon
manipulation tasks across diverse initial conditions. SPHINX combines a high-level waypoint pol-
icy for long-range movements and a dense policy for precise manipulation (Fig. 1). The waypoint
policy πwaypt takes point clouds as input and classifies semantically meaningful salient points along
with waypoints relative to them. This guides the robot to a suitable pose for interaction around a
salient point, such as reaching for a mug handle during coffee-making. The dense policy πdense

takes over only for precise actions around a salient point, like carefully inserting a coffee pod into its
slot (Fig. 1). Since the waypoint policy handles long-range movements, it uses point clouds to pro-
vide spatial context. The dense policy uses wrist camera images as input, capturing detailed object
features for precise manipulation and enabling visual generalization to variations in the surrounding
scene. Both policies also predict the next mode mt+1 to decide which policy to use after completing
the current movement. Without loss of generality, we initialize m0 in waypoint mode.

To train SPHINX, we first need to collect demonstrations using the two modes and annotate salient
point for each waypoint. In Section 4.1, we introduce an intuitive web GUI to easily collect such
demonstrations in the hybrid format and record salient points with no additional overhead. Then, we
discuss how to learn πwaypt(wt|ot) and πdense(at|ot) in Section 4.2 and Section 4.3 respectively.

Figure 2: Data Collection Interface: The demonstrator visualizes a point cloud opcdt′ in a web GUI, where
they can click a salient point z′t and specify a waypoint action w′

t by clicking and dragging to rotate or translate
a digital twin of the gripper. After the controller C reaches the waypoint to grasp the train, the process repeats
for a waypoint above the bridge. The demonstrator then switches to providing dense actions at with a 3D
SpaceMouse to carefully place the train on the bridge and tilt it, causing the train to roll.
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4.1 DATA COLLECTION INTERFACE FOR SPHINX

Without an existing interface that satisfies our need, we design a data collection system to support
waypoint specification, salient point annotation, and mode switching seamlessly. Our hardware
setup includes two third-person cameras to provide RGB-D observations to construct a colorized
point cloud opcdt , and one wrist-mounted camera to provide RGB wrist images owristt . We develop
a custom web-based GUI for specifying waypoints and salient points in waypoint mode. To provide
dense actions instead, a demonstrator can seamlessly switch from the computer mouse to any dense
teleoperation device like a VR/game console controller or a 3D mouse (Spacemouse) as in this work.

The top row of Fig. 2 visualizes the web-based GUI and the process of recording a waypoint action.
The GUI streams the point cloud of N points opcdt = {c1, c2, . . . , cN} to the browser in real time
and allows a demonstrator to select a salient point zt ∈ {1, . . . , N} for each waypoint by clicking
within the point cloud, (e.g. the small red dot on the toy car next to the mouse cursor.) After clicking
on the salient point, a digital twin of the gripper appears near the salient point to facilitate waypoint
specification. The demonstrator can set waypoints relative to these salient points with simple click
and drag interactions on the virtual gripper. The salient point specifies the region of interest for
interaction while the waypoint captures how to interact with it by specifying 7 DoF target end-
effector pose. After specifying a waypoint, the linear controller C defined above interpolates and
executes actions to reach the waypoint. Critically, this removes the need for the demonstrator to
manually teleoperate long-range movements. The entire waypoint motion is recorded as a sequence
{(ot, at,waypt, wt′ , zt′)}t∈{t′,...,t′+kt′} where t′ is the timestep when the waypoint is specified and
kt′ is the number of steps that the controller takes to complete the waypoint wt′ .

Once the controller finishes executing a waypoint, the demonstrator may specify another waypoint
or switch to dense mode for precise manipulation. To take over with dense mode, the demonstrator
simply operates the teleoperation device, such as pressing or twisting the joysticks on a controller,
and its movements are automatically detected and mapped to delta movements on the end-effector of
the robot. This is illustrated by the bottom row of Fig. 2, where the operator uses the teleoperation
device (Spacemouse in this case) to precisely align and place the toy car onto the narrow bridge.
Each step in dense mode is recorded as (ot, at,dense). Note that regardless of the mode, we
record the full set of observations ot which includes all camera views as well as proprioception to
facilitate data augmentation and to make datasets compatible with any IL policy.

4.2 THE WAYPOINT POLICY OF SPHINX

The waypoint policy πwaypt in SPHINX takes a point cloud opcdt as input and outputs a 7-DoF end-
effector pose wt for the robot to reach via a controller. We utilize point clouds as input to cast part of
the action prediction problem to learning a salient map over the points. This encourages the policy
to attend to the important spatial features (i.e. the handle on a mug) rather than memorize exact
locations (i.e. the x, y, z target grasp location).

The detailed design of the waypoint architecture is illustrated in Fig. 3. At a high level, we would
like to have per-point predictions, such as the probability of a point to be salient and the translational
offset between the point and the target location of the end-effector, as well as other predictions whose
targets are not expressed relative to the points, such as rotation, gripper state, and mode. We use a
transformer to process the points and add additional tokens for point-agnostic predictions. We first
use farthest-point-sampling (FPS) (Qi et al., 2017) to downsamples a raw point cloud to D = 1024
points, and then convert the points ci ∈ R6 to tokens ei ∈ Rd via a shared linear projection layer.
Then we feed the entire set of tokens into a transformer (Vaswani et al., 2017; Radford et al., 2019)
to get output embeddings. Since the points in a point cloud are unordered, the transformer has no
positional embedding and does not use a causal mask. We pass each point embedding through a
shared linear layer to get two predictions per point: one for the probability of the point being a
salient point p̂ and the other for the offset ϕ̂i = (xi, yi, zi) between the point position and target
waypoint position, illustrated by the middle “Prediction” panel of Fig. 3.

Instead of using a hard one-hot target for salient point prediction, we construct a soft salient map
over points where the probability of each point is given by:

pi ∝ ∥ci − ck∥2 if ∥ci − ck∥2 ≤ r else 0 (1)
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Figure 3: SPHINX-Waypoint Architecture & Training Objectives: SPHINX takes downsampled point
clouds as input, generating per-point tokens ei, and uses a Transformer-style architecture to predict salient
points and waypoint actions (position, orientation, gripper state). Specifically, SPHINX predicts the waypoint’s
positional component as an offset from a salient point. The model outputs a per-point translational offset ϕi, but
we only penalize the offset loss on salient points (shaded) during training. Salient point prediction is supervised
using cross-entropy loss (Lsalient) between predicted p̂i and ground truth pi salient probabilities.

Here, k is the index of the point selected by the user and r is a hyperparameter defining a neighbor-
hood of points that are salient. Within this radius, the probability of saliency decreases with distance
to the ground-truth point. In practice, we set to r to 5cm in all of our experiments. This target
distribution of salient points is illustrated by the red points on the right-most panel in Fig. 3, where
different shades of red represent the magnitudes of the probability pi. We train saliency prediction
using cross entropy loss on the predicted salient probability p̂i :

Lsalient = −
∑

i
pi log p̂i (2)

The goal for the offset prediction is to recover the target end-effector location relative to a predicted
salient point, which intuitively aims to ground the waypoint prediction in task-relevant features.
This can potentially provide more spatial grounding and awareness that can help with the policy
more effectively generalizing. Since we only care about the predicted offset from points with high
saliency at inference time, we only penalize the offset loss on the points that matter, whose ground-
truth salient probabilities pi are nonzero. Assuming ξ is the position of the target end-effector
location, φi is the location of the i-th point, the loss for offset prediction ϕ̂i is:

Loffset =
1∑

i 1{pi > 0}
∑

i
1{pi > 0} · ∥ξ −φi − ϕ̂i∥2 (3)

The prediction targets for rotation, gripper state and next mode are the same regardless of which
point is selected. Therefore, we predict them from the output embedding of their respective tokens.
We use the mean squared error (MSE) loss for rotation on euler angles Lrot, binary cross entropy
(BCE) loss for the binary gripper state Lgripper, and negative log-likelihood (NLL) loss for next mode
classification Lmode. Since these losses are standard, we move them to Appendix A for conciseness.
Finally, the full waypoint loss is the sum of all terms, and we find that a simple unweighted sum
works well in practice, eliminating the need of additional hyperparameters:

Lwaypoint = Lsalient + Loffset + Lrot + Lgripper + Lmode (4)

By default, the waypoint dataset only consists of {(ot, at,waypt, wt, zt)} for timesteps t where
the demonstrator explicitly specified a waypoint. However, because we use a controller to move
the end-effector between its current pose and the waypoint via kt interpolated actions, we can treat
interpolated steps as additional data points to train on with the same target waypoint action label.
We can expand each observation-action pair to a sequence:

{(ot, at,waypt, wt′ , zt′) | t′ ≤ t ≤ t′ + αkt′} (5)
where α is a hyperparameter specifying how much of the interpolated data to train on.

4.3 THE DENSE POLICY OF SPHINX

The waypoint policy πwaypt(wt|ot) guides the robot to reach objects in a desired pose. However,
long horizon tasks often contain sub-tasks like insertion or alignment that require finer-grained ac-
tions. These parts of the task would be easier to accomplish through direct, per-time-step teleop-
eration, rather than using a series of short waypoints. To address this, we train a dense policy,
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πdense(at|owristt ), which takes over near a salient point to perform precise manipulation before
handing control back to the waypoint policy. Note that this policy uses the wrist camera instead of
the point cloud opcdt , as the dense policy requires high-resolution views that capture close-up object
details. Ignoring global observations also helps it to better generalize to different scene arrangements
since it only needs to operate locally.

We instantiate the dense policy of SPHINX with diffusion policy (Chi et al., 2023) which has been
shown to work well in a wide range of manipulation tasks. To allow the dense policy to switch back
to waypoint mode, we augment its action with an additional mode prediction dimension that predicts
the next mode mt ∈ {0, 1, 2} corresponding to {waypt, dense, or terminate} modes. Fig. 1
illustrates how the dense policy fits into the entire SPHINX framework. We train the dense policy
using the entire dataset and use the interpolated steps to augment our data. This provides the policy
with more data and encourages it to be robust to slightly early or late mode switches.

5 EXPERIMENTS

In this section, we evaluate how SPHINX’s attention to salient points and hybrid policy architec-
ture impacts its performance and generalization on a suite of four challenging real-world tasks and
two simulated manipulation tasks. In all experiments, we assume access to two external camera
viewpoints and a wrist-mounted camera on the Franka Panda robot arm. See Appendix B for the
implementation details.

5.1 EVALUATION ON PRECISE AND LONG-HORIZON TASKS

We first evaluate SPHINX’s performance on complex, long-horizon tasks that demand precision.
We hypothesize that by interleaving waypoint actions predicted from point clouds, and dense ac-
tions predicted from close-up wrist-camera images once near a salient point, SPHINX will more
effectively be able to complete this class of tasks compared to baselines which do not exploit salient
points or a hybrid mode-switching policy. To assess this, we consider 3 challenging real-world tasks
which we found to be infeasible to teleoperate in waypoint-mode alone due to the required degree
of precision and reactivity: Cup Stack (30 demonstrations), Train Track (30 demonstrations), and
Coffee Making (60 demonstrations). See Fig. 5 for visualizations of each task and example rollouts.
For each task, we consider a large and diverse space of initial configurations (Fig. 6), varying the
relative locations of objects (cups, mugs, coffee pods, machine, train track).

Baselines: We compare against three baselines, the first being Diffusion Policy (DP) from Chi
et al. (2023) with images from all three cameras as input. We intend for this baseline to demonstrate
the benefit of waypoint modes (or lack thereof) for challenging manipulation tasks. The second
baseline is HYDRA (Belkhale et al., 2023), a hybrid IL policy which takes images from all three
views as input and outputs waypoint and dense actions. Given that it is image-based, HYDRA
uses a multiheaded policy with a shared image encoder as input to waypoint, dense, and mode
prediction heads. Its waypoint prediction head outputs a waypoint without any intermediate salient
representation. We choose this baseline to demonstrate the effects of separate input modalities (point
cloud vs. wrist image) for waypoint and dense modes, as well as the benefit of using salient points
to ground waypoint actions. The original HYDRA implementation used a simple MLP for the dense
head, but we update it to a diffusion policy for fair comparison. The last baseline is Fine-tuned
OpenVLA, where we fine-tune the recent OpenVLA model (Kim et al., 2024), pretrained on large
robotics datasets, on our single-task datasets. We use it as an independent baseline given the recent
trend of leveraging large prior datasets towards generalizable robotic manipulation. Due to its design
restrictions, this model can only take a single third-person image as input.

In Fig. 4 (left), SPHINX achieves the best performance across all three challenging tasks. Fine-tuned
OpenVLA struggles to achieve the required precision, lacking mode switches and close-up wrist
images. HYDRA shows nonzero performance but suffers from inaccurate waypoint predictions
without salient point attention and point clouds. Diffusion policy performs the best among the
baselines but struggles to generalize across initial configurations without the waypoint mode. As
shown in Fig. 6, SPHINX generalizes better across various object placements, while baselines tend
to memorize a few arrangements. Overall, these tasks are highly unforgiving of grasping failures
and imprecision. Baseline methods particularly struggle to make progress in the train and coffee
tasks where early mistakes (missed grasps or placements with the mug, coffee pod, train) derail an
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Figure 4: Success Rates Across Tasks: Left: SPHINX outperforms image-only dense baselines (OpenVLA,
diffusion policy) as well as a hybrid baseline (HYDRA) across 3 challenging real-world tasks (Fig. 5) collected
with hybrid mode teleoperation. Train Track requires a degree of precision that baselines lack, while SPHINX’s
use of salient points and hybrid actions enables precise, long-horizon manipulation. Right: SPHINX performs
1.6× better than the SoTA image or point-cloud based diffusion policies across tasks teleoperated in only
waypoint mode. Comparisons with the two vanilla waypoint baselines also show that both saliency prediction
and the relative waypoint action representation contribute to SPHINX’s strong performance.

Figure 5: SPHINX Rollouts: We evaluate SPHINX across a suite of challenging real-world tasks subject to
wide initial state variations. SPHINX’s waypoint mode alone is precise enough to handle tasks like drawer
opening, while the full hybrid policy leverages different action modes to tackle complex tasks such as cup
stacking, building and playing with a toy train set, and making coffee.

entire rollout. SPHINX’s use of salient point attention and close-up wrist images allows the policy
to carefully proceed through difficult task phases, leading to higher success across scenes.

5.2 WAYPOINT POLICY ABLATIONS

Although SPHINX’s performance in challenging real-world tasks relies on the dense policy, the
waypoint policy is crucial for its strong performance and generalization as it reliably guides the
robot to task-relevant locations. In this section, we validate the design choices behind SPHINX’s
waypoint policy through ablations and comparisons against state-of-the-art (SoTA) IL policies. To
isolate the impact of the waypoint policy from that of the dense policy, we conduct these experiments
exclusively on tasks that can be teleoperated solely in waypoint mode, without the use of dense mode.

We posit that SPHINX can achieve a higher task success rate across a wide range of initial spatial
configurations by effectively using waypoints (via salient points and offsets) to reduce the action
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Figure 6: Distribution of Successful Rollouts: Across 4 real-world tasks, we visualize the initial state distri-
bution for successful trials across methods by overlaying segmented initial images. Notably, SPHINX handles
the widest degree of spatial variety, while achieving a much higher task success rate compared to the most com-
petitive baseline. For particularly difficult tasks like Train Track and Coffee, the baselines tend to memorize
motions for particular object arrangements (i.e. mug behind pods) rather than generalize to spatial variations.

prediction horizon and maintain higher precision and better spatial awareness than alternatives. We
consider three tasks, one real task of opening an articulated drawer (Drawer, 20 demonstrations)
and two simulated environments in Robomimic (Mandlekar et al., 2021) (Can, 20 demonstrations,
and Square, 50 demonstrations).

Baselines: We compare SPHINX against four baselines. The first two are SoTA IL policies in
robotics — dense-only image-based Diffusion Policy (Chi et al., 2023) and its point-cloud based
extension 3D Diffusion Policy (3D DP) (Ze et al., 2024). We train them on the interpolated data
{ot, at}. In addition to RGB images from the same external cameras used by the point cloud-based
methods, the image-based DP also incorporates wrist camera inputs to ensure optimal performance.

Additionally, we consider two waypoint baselines that can also be seen as ablations. Vanilla Way-
point uses the same input and Transformer backbone as SPHINX but it removes the salient point
prediction and offset prediction. It instead adds a Translation Token, similar to the Rotation Token,
to the Transformer and predicts the target translation from the output of that token using MSE loss.
Vanilla Waypoint + Auxiliary Salient Points predicts the translation the same way as vanilla way-
point but adds the salient point prediction of SPHINX as an auxiliary task. It can also be viewed
as SPHINX without offset prediction. We choose the two waypoint baselines to ablate over the
importance of salient point and offset prediction separately.

Results: In Fig. 4 (right), we find that SPHINX achieves 1.6× better performance than the best base-
line between SoTA image-based or 3D diffusion policies. By carefully inspecting the two vanilla
waypoint variants, we can see that vanilla waypoint is only slightly better in the simplest Can task
but notably worse than the diffusion policies on the more complex simulation task of Square as well
as the real world Drawer task. This is interesting as it suggests that the shorter prediction horizon
of waypoint policies alone is not necessarily a benefit without predicting salient points. Adding the
salient point prediction as an auxiliary task improves the performance of vanilla waypoint without
changing the action representation, especially in Square which requires highly precise maneuvers
like grasping and hanging a small tool handle where attention to specific object parts is crucial.
This suggests the utility of salient points for encouraging better action prediction. SPHINX’s domi-
nant performance over the two waypoint baselines suggests the effectiveness of anchoring waypoint
action prediction relative to salient points.

5.3 VISUAL GENERALIZATION

We next evaluate SPHINX’s ability to handle visual rather than only spatial generalization on Drawer
and Cup Stack. As seen in Table 1, SPHINX demonstrates a promising degree of generalization to
visual distractors during execution, and unseen third-person camera viewpoints (Fig. 7), retaining
high performance. This is likely enabled by using viewpoint-agnostic point clouds (assuming cal-
ibration), salient points encouraging the policy to ignore distractors, and wrist-camera images in
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Method Drawer Drawer Cup Stack Cup Stack
Unseen height Novel viewpoint Visual distraction Novel viewpoint

Diffusion Policy 4/10 1/10 1/10 0/10
SPHINX 9/10 9/10 8/10 9/10

Table 1: OOD Results: We compare SPHINX to DP on Drawer and Cup Stack across various unseen scenar-
ios. In Drawer, SPHINX successfully opens the drawer at unseen heights by attending to the handle as a salient
point, while DP struggles. In Cup Stack, SPHINX maintains strong performance despite visual distractors, as
its salient points focus on the cups, and the wrist-only dense policy ignores surrounding scene changes. Finally,
SPHINX generalizes to unseen camera viewpoints in both tasks, whereas DP’s image-based approach suffers.

Figure 7: Generalization Capabilities: SPHINX generalizes across multiple axes on Cup Stack, handling
static (e.g., office supplies) and dynamic (e.g., moving toy train) distractors (see website). Using calibrated
point clouds as input further allows for generalization to unseen camera viewpoints at test time, and the way-
point controller enables accelerated execution speeds, completing Cup Stack in 9.2 s. on average.

dense mode which are largely unaffected by changes in the surrounding scene. Diffusion policy
heavily overfits to the training scenes and suffers a noticeable performance drop.

5.4 EXECUTION SPEED

A key advantage of SPHINX over dense-only methods is its decoupled waypoint and dense policies.
While dense methods are tied to the speed of actions recorded during data collection, SPHINX uses
a waypoint controller that allows flexible execution speeds at test time. We specifically collect all
data across all tasks using a controller limited to a maximum delta of 1 cm at 10Hz. After training
SPHINX and dense-only diffusion policy on Cup Stack, we perform 10 trials of the task, where we
compare SPHINX implemented with a 2× sped-up controller (2 cm maximum delta at test-time) to
DP trained on the 1× data. SPHINX completes the task in an average of 9.2 seconds, a 1.7× speedup
over diffusion policy (15.6 seconds). While further speed increases led to controller imprecision,
SPHINX has potential for even faster execution on more capable hardware.

6 LIMITATIONS AND CONCLUSION

SPHINX demonstrates strong performance and generalization across a range of tasks, but our policy
is not without failures. The majority of SPHINX’s failures stem from the dense policy being slightly
imprecise for grasping or manipulation. Although we mitigate this by using the dense policy only
for short horizons near salient points, performing the “last mile” of precise insertion or alignment re-
mains challenging for some tasks. Additionally, our data collection interface uses a linear controller
to reach waypoints. This currently limits SPHINX to fairly quasistatic tasks without fast, dynamic
movements. Finally, the performance of our waypoint policy is limited by the quality of the input
point cloud. We currently perform a one-time calibration procedure to obtain multi-view extrinsics
and point clouds, but sensor noise and calibration error is not completely avoidable.

To summarize, we present SPHINX, a visuomotor IL policy which learns to perform complex manip-
ulation tasks from a limited amount of demonstrations while generalizing across many axes: novel
spatial arrangements, visual distractors, novel viewpoints, and even customizable execution speeds
(Fig. 7). SPHINX achieves this using a hybrid policy architecture that takes point clouds and wrist-
images as input, and outputs waypoints and dense actions guided by salient points. SPHINX achieves
an average success rate of 86.6% across 2 simulated and 4 real-world high-precision, long-horizon
tasks, including making coffee and assembling a train set with several pieces. Our policy outper-
forms state-of-the-art IL baselines by 41.1% on average across 440 real world robot trials. Avenues
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for future work include improving dense mode manipulation with additional sensing modalities such
as tactile sensors, extending our data collection interface to support dynamic manipulation tasks, and
deploying SPHINX in the wild across a range of real-world environments.
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A ADDITIONAL LOSSES FOR THE WAYPOINT POLICY IN SPHINX

In Section 4.2 we define the salient point prediction loss and offset loss for SPHINX. Here we
complete the full loss definitions for the waypoint policy. Recall that the waypoint policy needs
to predict translation ξ̂, rotation α̂, binary gripper state ĝ and next mode m̂. As described in the
main paper, the translation prediction is decomposed to first predict salient points (Eq. (2)) and then
predict offset ϕ̂ w.r.t. the salient point (Eq. (3)). We represent rotations in Euler angles and loss is
mean squared error (MSE) between the prediction α̂ and target α:

Lrot = ∥α− α̂∥2. (6)

Although MSE on Euler angle ignores the wrap-around effect, i.e. −π and π represent the same
rotation but the loss is not 0, we choose it for its simplicity and find it to work well in practice.
Other representations for rotation and their corresponding losses, such as quaternion, should work
similarly. The gripper state is binary with 1 for open and 0 for close. Assuming g is the ground-truth
gripper state and ĝ is the predicted probability of the gripper being open, then the gripper loss is a
binary cross entropy loss:

Lgripper = g log ĝ + (1− g) log(1− ĝ). (7)

The waypoint policy also need to predict the next mode, which is a three-way classification among
candidates {waypt,dense,terminate}. We train it via negative log-likelihood:

Lmode = − log m̂ (8)

where m̂ is the predicted probability for ground-truth mode m. Finally, the full waypoint loss is the
sum of all terms, and we find that a simple unweighted sum works well in practice, eliminating the
need of additional hyperparameters:

Lwaypoint = Lsalient + Loffset + Lrot + Lgripper + Lmode (9)

B IMPLEMENTATION DETAILS OF SPHINX

B.1 WAYPOINT POLICY

The waypoint policy in SPHINX is using a Transformer to predict salient probability and offset per
point, as well as to predict rotation, gripper and mode using additional tokens similar to the [CLS]
token in visual classification. The Transformer has 6 layers and each layer has 512 embedding
dimensions over 8 attention heads. We remove positional embeddings from Transformer as the point
cloud input has no ordering. We set dropout to 0.1 for all Transformer blocks to avoid overfitting.
We optimize the waypoint policy with Adam (Kingma & Ba, 2015) optimizer with base learning
rate 1e−4 and cosine learning decay over the entire training process, i.e. decaying to 0 at the end of
training. We clip the gradient with maximum norm 1. We set batch size to 64. We also maintain an
exponential moving average (EMA) of the policy with the decay rate annealing from 0 to 0.9999.
We use the final EMA policy in all evaluations without any further model selection. All waypoint
policies are trained for 2000 epochs.

As mentioned in the Section 4.2, we use observations from interpolated steps as data augmentation
for waypoint training, a technique we refer to as temporal augmentation:

{(ot, at,waypt, wt′ , zt′) | t′ ≤ t ≤ t′ + αkt′} (10)

where t′ is the initial step when the demonstrator specified the current waypoint, kt′ is the total num-
ber of steps it takes for the controller C to execute this waypoint. Essentially we train πwaypt(w′

t|ot)
on the initial ot′ as well as the intermediate observations ot′+1:t′+αkt′ . Here α = 0 means no tem-
poral augmentation and α = 1 means training on the entire waypoint segment. In practice, we find
that setting α = 0.2 strikes a balance between sufficient augmentation while avoiding interpolated
observations that occur too late in a waypoint segment, which can cause the policy to confuse the
current target waypoint with the next one. As a concrete example, the waypoint dataset for the
Robomimic Square task contains 50 demonstrations, each containing 6 waypoints. The raw dataset
for training the waypoint policy contains 300 examples. With the temporal augmentation, the dataset
now contains roughly 1800 examples, increasing the amount of data by 6 times. All the waypoint
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Env Can (20 demos) Square (50 demos)
Waypoint Method Vanilla Vanilla (+ Aux SP) SPHINX Vanilla Vanilla (+ Aux SP) SPHINX

w/o Temp. Aug. 68% 70% 77.5% 8% 68% 75.5%
w/ Temp. Aug. 70% 78% 93.5% 13% 65.5% 86.5%

Table 2: Waypoint Policy Ablations

policies, including vanilla waypoint baselines in Section 5.2 are trained with temporal augmentation
α = 0.2 as it improves the performance for all of them. The performance of each waypoint policy
with and without temporal augmentation is listed in Table 2. We can see that temporal augmentation
improves the performance of waypoint policies in five out of six scenarios and achieves similar per-
formance in the remaining one. SPHINX benefits the most from the augmentation technique, with
13.5% average improvement across the two environments.

Apart from the temporal augmentation, we also apply random translation augmentation to the
point cloud input and target action. The amount of random translation is sampled uniformly from
[−5cm, 5cm] along x, y, z-axes. We follow the common practice to crop the point cloud to remove
points outside of the workspace but do not apply any other vision pipelines (i.e. no object detection
nor segmentation) to preprocess the point cloud.

B.2 DENSE POLICY

The dense policy in SPHINX is a diffusion policy. We closely follow the original implementation
of Chi et al. (2023). Specifically, we use ResNet-18 (He et al., 2016) encoder to process the wrist
image and append the proprioceptional to the image embedding before feeding it to a 1-D convo-
lutional UNet for action denoising. The diffusion policy is trained with DDPM to predict the noise
given the noisy action as input and observation as context. We follow the best practices of training
it using Adam (Kingma & Ba, 2015) with weight decay, cosine learning rate schedule and take the
exponential moving average of the policy as final policy for evaluation. Our implementation is able
to reproduce the results on Robomimic from the original paper.

C EXTENDED RELATED WORK

Relationship between Salient Point and Affordance. Affordance learning is a common concept
in robotics manipulation. It can refer to classifying the nature of interaction for certain object points
(e.g., a tool handle is ”graspable,” a button is ”pressable”) (Borja-Diaz et al., 2022), or more broad
action candidates or success possibilities associated with objects (Ahn et al., 2022). Salient points
in SPHINX can be thought of as a form of per-point affordance, but must be combined with offsets
to specify how the end-effector should interact with a given point. Critically, we demonstrate that
the per-point affordances in SPHINX allow the policy to focus on task-relevant features and avoid
paying attention to arbitrary objects, leading to robust execution in the presence of visual distractors.

Action Representation in Robotics. Several works have also considered using classification in-
stead of regression for action prediction in imitation learning setting. PerAct (Shridhar et al., 2022)
divides the entire 3D workspace into voxels and convert the end-effector pose prediction problem
into classification over the fixed set of voxels. The precision of prediction depends on the granularity
of the voxel, and the number of action candidates grows cubically in the number of voxels, making
it challenging for tasks that requires high-precision. Act3D (Gervet et al., 2023) performs coarse-
to-fine scoring for “ghost points”, which addresses the granularity issue of PerAct, but still lacks
any kind of explicit intermediate representation such as salient points. In comparison, SPHINX first
predicts the salient point, a point that physically exists in the input point cloud, through classifica-
tion and then predicts offset w.r.t. the salient to recover the full action. This allows SPHINX to be
arbitrarily precise without incurring the high cost of having fine-grained voxels.

SGRv2 (Zhang et al., 2024) is a recent work that uses per-point offset prediction for robotics manip-
ulation. It predicts actions as per-point offset for all points, and uses a weighted average to get the
final action output. In contrast, SPHINX utilizes salient point learned from human labels as the an-
chor for offset prediction. Due to the existence of salient points, SPHINX applies the offset loss only
to the proximal points of the “demonstrator-specified salient point”, i.e. the red points in Fig. 3 and
Eq. (3). This a easier task for the neural network since it does not need to allocate capacity to predict
offset for points far from the salient points. Additionally, the salient point learning objective is one
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of the main strength of SPHINX . The ablation in the right panel of Fig. 4 shows that the classifica-
tion loss is helpful, that even just having it as an auxiliary task significantly improves performance
of the “vanilla waypoint”. On the implementation side, SPHINX uses a GPT-2 style Transformer
while SGRv2 uses PointNeXt as backbone. Although both methods should work well with either
architecture choices but we think it is interesting to see a generic architecture not specialized for
point cloud to perform quite well in these tasks.

D IMPLEMENTATION AND PERFORMANCE OF BASELINES

In this section we discuss the steps we have taken to ensure that the performance of our baselines is
valid and discuss potential reasons for the low performance for baselines like Hydra and OpenVLA.

Diffusion policy (DP): Our DP implementation is able to reproduce the reported results from the
original paper and it achieves the reported performance on Robomimic Can and Square with 200
demonstrations from the original Robomimic dataset. It uses the same set of cameras (3rd person
and wrist) as SPHINX. In the SPHINXexperiment we collected 50 demonstrations for the Square
and we have verified that the DP trained on the Sphinx dataset (44%, 50 demonstrations) is similar
to the one trained on 50 demonstrations from the Robomimic dataset (45%, 50 demonstrations).

3D diffusion policy (DP3): Our implementation closely follows the one from their original code-
base. In their original paper, DP3 is not evaluated on the Robomimic benchmark. We find it to
perform similarly as DP on the real world Drawer task but perform slightly worse than DP on
Robomimic benchmarks and other more complicated real world tasks. This is reasonable given that
DP3 purely conditions point clouds constructed from 3rd person cameras and does not use wrist
camera images. The close-up information from the wrist camera images is crucial for Robomimic
tasks as well as our real world tasks. In comparison, SPHINX switches to a wrist-view image based
diffusion policy for fine-manipulation, resolving the lack-of-detail issue of point cloud inputs.

Hydra: We modernize Hydra by using the diffusion policy as its dense policy while keep the rest of
the implementation as close to the original design as possible. The low performance of Hydra seems
unreasonable at first glance, but it can be explained via a close look at their original results and
our ablations. Our coffee-making task is similar to the one in Hydra. However, the original Hydra
paper collected 100 demonstrations with little variation on the location of the coffee machine, and
put the cup and coffee pod on a shelf to make them easier to pick up. In our case, we randomize
the initial location and orientation of the cup, pod and coffee machine, and only use 60 demon-
strations. Therefore, it is reasonable to expect a much lower performance for Hydra on this task.
Hydra’s waypoint branch is similar to our “vanilla waypoint”, i.e. directly predicting target pose
via regression, but uses images instead of point clouds. From the ablation (Fig. 4, right panel), we
see that this vanilla waypoint policy is noticeably worse than plain diffusion policy on the hard task
(Square) that requires precision. Therefore, considering that Hydra’s waypoint policy is worse than
diffusion policy, it is not surprising to see that the full Hydra policy (vanilla waypoint + diffusion
policy) performs worse than diffusion policy in the real world tasks.

OpenVLA: We follow the instructions and code provided by the OpenVLA authors and apply ev-
erything as in their fine-tuning script (which does use image augmentation). We believe the poor
performance of OpenVLA is not surprising for a few reasons. From Figure 5 (left half) of the Open-
VLA paper, we see that fine-tuned OpenVLA is **worse** than Diffusion Policy in 2 out of the 3
cases in single-task setting on Franka Panda hardware. In general, OpenVLA’s distribution of pre-
training data relies heavily on the Bridge Dataset, which has a major embodiment gap compared to
our Franka dataset. OpenVLA is only compatible with a single 3rd person view, and cannot leverage
a close-up wrist image view. On all of the real world tasks we did, the wrist camera view is crucial
to sensing end-effector object alignment for precise manipulation. For example, for cup stack (the
easiest of the hybrid tasks), even being off by a centimeter can lead to knocking over one or both of
the cups. Thus, OpenVLA’s poor performance is unsurprising given its limited observation space.
Other recent work (Black et al.) reports similar trends on OpenVLA where a fine-tuned OpenVLA
performs poorly, achieving 0% success rate on 4 out of 5 settings and ≈ 35% on 1 setting.
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